
Wamu: A Protocol for Computation of Threshold
Signatures by Multiple Decentralized Identities

Whitepaper

David Semakula
hello@davidsemakula.com

https://davidsemakula.com

Published: 15th May, 2023
Last Updated: 13th November, 2023

Version: 1.5

Contents
1. Introduction . 1

1.1. Problem . 2
1.2. Solution . 2

2. Preliminaries . 3
3. Share Splitting and Reconstruction 3

3.1. Share splitting . 4
3.2. Share reconstruction . 4

4. Share Recovery . 4
4.1. Share recovery with a surviving quorum of honest parties . . 5
4.2. Share recovery with a backup 5

Conclusion . 6
Acknowledgements . 6
References . 6

1. Introduction
Multisig wallets (e.g. Safe 1) are already widely adopted 2 and have proven
the importance of noncustodial shared wallets with threshold access structures
controlled by multiple decentralized identities, for mainstream users and decen-
tralized teams and organizations.

1Safe. https://safe.global
2Dune Analytics. [Mainnet] Safe. https://dune.com/safe/ethereum

1

https://safe.global
https://dune.com/safe/ethereum

However, threshold signatures have some unique benefits over multisig wallets
including: cost-effectiveness, universal interoperability, and enhanced privacy
and security.

This is because while multiple parties each independently sign a transaction and
the set of signatures is evaluated against the access structure/security policy
on-chain for multisig wallets, threshold signature schemes instead allow multiple
parties to jointly compute a single signature that’s similar to those computed by
traditional single-party wallets (e.g. Metamask 3).

1.1. Problem

Despite the aforementioned benefits, there are currently no mainstream threshold
signature wallet alternatives to multisig wallets for decentralized teams and
organizations that require noncustodial shared wallets with threshold access
structures because:

• Most mainstream threshold signature wallets (e.g. ZenGo 4 and Torus 5)
are designed for the single-user setting with each party simply being either
a separate device or authentication factor for the same user.

• Most institutional threshold signature wallet solutions (e.g. Fireblocks 6,
Sepior 7 and Taurus 8) have architectures that are either infeasible and/or
undesirable for decentralized teams and organizations because of one or
more of the following requirements:

– Centralized or trust-based identity infrastructure for authenticating
signing parties.

– Controlled network environments with low latency and/or persistent
synchronous connections between signing parties.

1.2. Solution

The ecosystem needs a new breed of noncustodial threshold signature wallet
solutions that are controlled by multiple decentralized identities and can run on
mainstream consumer devices making them well suited for use by decentralized
teams and organizations, and mainstream users.

Recent breakthroughs in threshold signing research have yielded non-interactive
threshold signature schemes (e.g. CGGMP20 [1], GG20 [2], CMP20 [3] and
FROST20 [4]) that allow for asynchronous communication between signing
parties, making the use of mainstream consumer devices as signing parties
viable.

3MetaMask. https://metamask.io
4ZenGo. https://zengo.com
5Torus. https://tor.us
6Fireblocks. https://www.fireblocks.com
7Sepior. https://sepior.com
8Taurus. https://www.taurushq.com

2

https://metamask.io
https://zengo.com
https://tor.us
https://www.fireblocks.com
https://sepior.com
https://www.taurushq.com

To remove the need for centralized and/or trust-based identity systems, and
provide a user experience similar to existing multisig wallets, Wamu introduces
a unique approach of augmenting a state-of-the-art non-interactive threshold
signature scheme (e.g. CGGMP20 [1]) by cryptographically associating each
signing party with a decentralized identity. This is achieved by:

• Splitting the secret share for each party between the party and the output
of a signing operation by its associated decentralized identity, thus making
the signing operation a requirement for reconstructing the party’s secret
share as described in section 3.

• Adding peer-to-peer decentralized identity authentication to the key gener-
ation and signing protocols (and optionally to the key refresh protocol) of
the threshold signature scheme.

• Defining protocols for identity rotation, access structure modification
(i.e. share addition and removal and threshold modification) and share
recovery (as described in section 4) that build on top of the above 2
augmentations.

NOTE: For interoperability with existing wallet solutions, the only requirement
for decentralized identity providers is the ability to compute cryptographic
signatures for any arbitrary message in such a way that the output signature is
1) deterministic and 2) can be verified in a non-interactive manner.

2. Preliminaries
The rest of this document describes how Wamu’s unique share splitting and
reconstruction, and share recovery protocols work. For these descriptions, we’ll
use the following notation:

• P denotes a party.
• I denotes a decentralized identity.
• sk denotes the secret key of a decentralized identity.
• Sig denotes a signing algorithm.
• q denotes the prime order of the cyclic group of the elliptic curve.

NOTE: While the share splitting and reconstruction protocol is described in
technical detail in this document, for simplicity, the share recovery protocol is only
described at a high-level and no technical detail is provided for decentralized
identity authentication and the rest of Wamu’s sub-protocols. We refer the
reader to Wamu’s technical specification [5] for the technical details that are not
provided in this document.

3. Share Splitting and Reconstruction
Assuming that we have a secret share x for a party P with an associated
decentralized identity I, the share splitting and reconstruction protocol describes
how to split x between P and the output of a signing operation Sig by I so that
the output of Sig is required to reconstruct the secret share x.

3

This is achieved by generating a message k (we’ll refer to this message as the
“signing share”) and computing a “sub-share” β (i.e a share of the secret share
x) in such a way that k needs to be signed by I using Sig to produce another
“sub-share” α, such that α and β are shares of x under Shamir’s secret-sharing
scheme [6].

NOTE: Share splitting and reconstruction is a single-party localized concern
that happens after (and is not related to) the distributed key generation (DKG)
protocol of the threshold signature scheme.

3.1. Share splitting

Given a secret share x as input and access to the decentralized identity I with
secret key sk, the share splitting protocol proceeds as follows:

1. Sample a random message k (i.e. the signing share).
2. Compute a signature (r, s)← Sig(sk, k).
3. Compute the first sub-share of x as the point α = (r, s) (mod q).
4. Generate a line L (i.e a polynomial of degree 1) such that α is a point on

the line and x is the constant term (i.e. Polynomial Interpolation [7])
5. Compute another point β from L such that β ≠ α, β becomes the second

sub-share of x.
6. Erase both α and L from memory.
7. Return the signing share k and the sub-share β.

3.2. Share reconstruction

Given a signing share k and a sub-share β as input (i.e. the outputs of the share
splitting protocol in section 3.1 above) and access to the decentralized identity I
with secret key sk, the share reconstruction protocol proceeds as follows:

1. Compute a signature (r, s)← Sig(sk, k).
2. Compute a sub-share α as the point α = (r, s) (mod q).
3. Generate a line L by performing Polynomial Interpolation [7] using α and

β as inputs.
4. Compute x as the constant term of L.
5. Erase both α and L from memory.
6. Return x as the secret share.

NOTE: The signature parameters r and s in (r, s) ← Sig(sk, k) are already
computed modulo q. We use the notation α = (r, s) (mod q) for the sub-share
to make it clear (at a glance) that the sub-shares are computed using finite field
arithmetic.

4. Share Recovery
Share recovery is only possible if the user’s decentralized identity either survived
or can be recovered after the disastrous event. In either case, there are two

4

options for share recovery depending on:

• A quorum of honest parties surviving the disastrous event.
• A backup (preferably encrypted) of a signing share k and sub-share β pair

on user-controlled secondary or device-independent storage.

4.1. Share recovery with a surviving quorum of honest parties

If a quorum of honest parties survives the disastrous event, share recovery can
be accomplished based on peer-to-peer decentralized identity authentication.

The party Pi that needs to recover its secret share initiates a signature-
authenticated share recovery request leveraging its associated decentralized
identity Ii. The surviving quorum of honest parties collectively verify the
request, and then initiate the key refresh protocol of the threshold signature
scheme with Pi participating if Ii matches a previously verified decentralized
identity for a signatory.

4.2. Share recovery with a backup

4.2.1. Overview of share recovery with a backup From the share splitting
and reconstruction protocol in section 3 above, we note that for any party P ,
the combination of a signing share k and a sub-share β alone is insufficient
to reconstruct the secret share x. This is because a signature of k from the
decentralized identity I is required to compute the sub-share α, so that α and
β can then be used to reconstruct L and compute the secret share x as the
constant term of L.

Therefore, a signing share k and sub-share β pair can be safely backed up to
user-controlled secondary (e.g. a secondary device or a flash drive) or device-
independent storage (e.g. Apple iCloud 9, Google Drive 10, Microsoft OneDrive
11, Dropbox 12 e.t.c) without exposing the secret share x.

4.2.2. Share recovery with an encrypted backup For increased security,
a signature of a standardized phrase can be used as entropy for generating an
encryption secret which can then be used to encrypt the signing share k and the
sub-share β using a symmetric encryption algorithm before saving them to back
up storage. Share recovery would then start by signing this standardized phrase,
using the signature to recreate the encryption secret and then decrypting the
encrypted backup to retrieve the signing share k and the sub-share β.

4.2.3. Further security and usability considerations for share recovery
with a backup For further improved security and usability, the signing share

9Apple iCloud. https://www.icloud.com.
10Google Drive. https://drive.google.com.
11Microsoft OneDrive. https://www.microsoft.com/en-us/microsoft-365/onedrive/online-

cloud-storage.
12Dropbox. https://www.dropbox.com.

5

https://www.icloud.com
https://drive.google.com
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://www.dropbox.com

k can be prefixed with a custom message that alerts the user to the purpose of
the signature. This can help reduce the effectiveness of an adversary that gains
access to the backup and tries to trick the user into signing m.

Additionally, it’s possible to rerun the share splitting protocol to generate a new
pair of a signing share k∗ and a sub-share β∗ such that k∗ ̸= k, β∗ ̸= β and
L∗ ≠ L to be specifically used for backup and recovery. This gives us the option
to have separate signing shares for backup and recovery with customized prefixes
that make it clear to the user that they’re signing a backup signing share.

Lastly, the “backup” signing share k∗ can be generated based on user input
(e.g. a passphrase or security questions) removing the need for it to be backed
up together with a sub-share β∗ but instead relying on the user to provide this
input during recovery as a security-usability tradeoff.

Conclusion
The Wamu project (meaning “together”) aims to unlock the benefits of threshold
signatures for decentralized teams and organizations, and mainstream users that
require noncustodial shared wallets with threshold access structures by:

• Defining an open protocol that encourages research into and development
of mainstream multi-user threshold signature wallet solutions.

• Providing modular, performant, free and open-source building blocks
that allow software developers to either build new mainstream multi-user
threshold signature wallets or integrate state-of-the-art threshold signature
schemes into existing mainstream wallets.

Acknowledgements
This work is funded by a grant from the Ethereum Foundation 13.

References
[1] Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N. and Peled, U.

2020. UC non-interactive, proactive, threshold ECDSA with identifiable
aborts. Proceedings of the 2020 ACM SIGSAC conference on computer
and communications security (New York, NY, USA, 2020), 1769–1787.
https://eprint.iacr.org/2021/060.

[2] Gennaro, R. and Goldfeder, S. 2020. One round threshold ECDSA
with identifiable abort. Cryptology ePrint Archive, Paper 2020/540.
https://eprint.iacr.org/2020/540.

[3] Canetti, R., Makriyannis, N. and Peled, U. 2020. UC non-interactive,
proactive, threshold ECDSA. Cryptology ePrint Archive, Paper 2020/492.
https://eprint.iacr.org/2020/492.

13Ethereum Foundation: Ecosystem Support Program. https://esp.ethereum.foundation.

6

https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/492
https://esp.ethereum.foundation

[4] Komlo, C. and Goldberg, I. 2020. FROST: Flexible round-optimized
schnorr threshold signatures. Cryptology ePrint Archive, Paper 2020/852.
https://eprint.iacr.org/2020/852.

[5] Wamu: A protocol for computation of threshold signatures by multiple
decentralized identities: https://wamu.tech/specification. Accessed: 2023-
05-15.

[6] Shamir, A. 1979. How to share a secret. Commun. ACM. 22, 11 (Nov.
1979), 612–613. DOI:https://doi.org/10.1145/359168.359176.

[7] Wikipedia. Polynomial interpolation:
https://en.wikipedia.org/wiki/Polynomial_interpolation. Accessed:
2023-05-12.

7

https://eprint.iacr.org/2020/852
https://wamu.tech/specification
https://doi.org/10.1145/359168.359176
https://en.wikipedia.org/wiki/Polynomial_interpolation

	1. Introduction
	1.1. Problem
	1.2. Solution

	2. Preliminaries
	3. Share Splitting and Reconstruction
	3.1. Share splitting
	3.2. Share reconstruction

	4. Share Recovery
	4.1. Share recovery with a surviving quorum of honest parties
	4.2. Share recovery with a backup

	Conclusion
	Acknowledgements
	References

