
Wamu: A Protocol for Computation of Threshold
Signatures by Multiple Decentralized Identities

Technical Specification

David Semakula
hello@davidsemakula.com

https://davidsemakula.com

Published: 15th May, 2023
Last Updated: 13th November, 2023

Version: 1.6

Contents
1. Introduction . 2
2. Preliminaries . 2
3. Share Splitting and Reconstruction 3

3.1. Share splitting . 3
3.2. Share reconstruction . 3

4. Threshold Signature Scheme Augmentations 4
4.1. Key Generation . 5
4.2. Signing . 5
4.3. Key Refresh . 6

5. Identity Authentication and Quorum Approval 6
5.1. Identity Authenticated Request 6
5.2. Identity Challenge . 7
5.3. Identity Rotation . 7
5.4. Quorum Approved Request 8

6. Access Structure Modification . 9
6.1. Share Addition . 10
6.2. Share Removal . 10
6.3. Threshold Modification . 10

7. Share Recovery . 10
7.1. Share recovery with a surviving quorum of honest parties . . 11
7.2. Share recovery with a backup 11

Acknowledgements . 13
References . 13

1

1. Introduction
This document describes the Wamu protocol which augments a state-of-the-art
non-interactive threshold signature scheme (e.g. CGGMP20 [1]) by cryptographi-
cally associating each signing party with a decentralized identity. This is achieved
by:

• Splitting the secret share for each party between the party and the output
of a signing operation by its associated decentralized identity, thus making
the signing operation a requirement for reconstructing the party’s secret
share.

• Adding peer-to-peer decentralized identity authentication to the key gener-
ation and signing protocols (and optionally to the key refresh protocol) of
the threshold signature scheme.

• Defining protocols for identity rotation, access structure modification
(i.e. share addition and removal and threshold modification) and share
recovery that build on top of the above 2 augmentations.

Wamu is designed to operate in a decentralized, trust-minimized and asyn-
chronous setting with:

• no centralized or trust-based identity infrastructure.
• signing parties being mainstream consumer devices communicating asyn-

chronously.

NOTE: For interoperability with existing wallet solutions, the only requirement
for decentralized identity providers is the ability to compute cryptographic
signatures for any arbitrary message in such a way that the output signature is
1) deterministic and 2) can be verified in a non-interactive manner.

2. Preliminaries
The rest of this document describes the Wamu protocol in technical detail. For
these descriptions, we’ll use the following notation:

• P denotes a party.
• I denotes a decentralized identity.
• vk denotes the verifying key (or address) of a decentralized identity.
• sk denotes the secret key of a decentralized identity.
• Sig denotes a signing algorithm.
• Ver denotes a signature verification algorithm.
• q denotes the prime order of the cyclic group of the elliptic curve.
• S denotes the set of verified decentralized identities for all parties.
• t denotes the threshold (i.e. the minimum number of signatories required

to jointly compute a valid signature using the threshold signature scheme).
• A denotes a predefined prefix chosen to ensure that signatures computed

for identity authentication cannot be valid transaction signatures.
• ∥ denotes concatenation using an unambiguous encoding scheme.

2

NOTE: While the augmenting protocols in this document are described in
relation to the current (circa. 2023) state-of-the-art CGGMP20 [1] non-interactive
threshold signature scheme for ECDSA signatures, Wamu is a generic protocol
that can be adapted to any non-interactive threshold signature scheme (e.g. GG20
[2], CMP20 [3] and FROST20 [4]) that allows for asynchronous communication
between signing parties.

3. Share Splitting and Reconstruction
Given a secret share x for a party P with an associated decentralized identity I,
the share splitting and reconstruction protocol describes how to split x between
P and the output of a signing operation Sig by I so that the output of Sig is
required to reconstruct the secret share x.

This is achieved by generating a message k (we’ll refer to this message as the
“signing share”) and computing a “sub-share” β (i.e a share of the secret share
x) in such a way that k needs to be signed by I using Sig to produce another
“sub-share” α, such that α and β are shares of x under Shamir’s secret-sharing
scheme [5].

NOTE: Share splitting and reconstruction is a single-party localized concern
that happens after (and is not related to) the distributed key generation (DKG)
protocol of the threshold signature scheme.

3.1. Share splitting

Given a secret share x as input and access to the decentralized identity I with
secret key sk, the share splitting protocol proceeds as follows:

1. Sample a random message k (i.e. the signing share).
2. Compute a signature (r, s)← Sig(sk, k).
3. Compute the first sub-share of x as the point α = (r, s) (mod q).
4. Generate a line L (i.e a polynomial of degree 1) such that α is a point on

the line and x is the constant term (i.e. Polynomial Interpolation [6])
5. Compute another point β from L such that β ≠ α, β becomes the second

sub-share of x.
6. Erase both α and L from memory.
7. Return the signing share k and the sub-share β.

3.2. Share reconstruction

Given a signing share k and a sub-share β as input (i.e. the outputs of the share
splitting protocol in section 3.1) and access to the decentralized identity I with
secret key sk, the share reconstruction protocol proceeds as follows:

1. Compute a signature (r, s)← Sig(sk, k).
2. Compute a sub-share α as the point α = (r, s) (mod q).

3

3. Generate the line L by performing Polynomial Interpolation [6] using α
and β as inputs.

4. Compute x as the constant term of L.
5. Erase both α and L from memory.
6. Return x as the secret share.

NOTE: The signature parameters r and s in (r, s) ← Sig(sk, k) are already
computed modulo q. We use the notation α← (r, s) (mod q) for the sub-share
to make it clear (at a glance) that the sub-shares are computed using finite field
arithmetic.

4. Threshold Signature Scheme Augmentations
The general approach for augmenting threshold signature protocols (i.e. key
generation and signing - and optionally key refresh) is for each party to sign a
non-interactive replay resistant challenge during the first round of communication
to prove that it currently controls the associated decentralized identity. The
other parties then verify the challenge signature at the beginning of the next
round or identify the culprit and halt.

Key generation and key refresh protocols typically include a commitment to
secret and random values in their first round while signing includes an arbitrary
message, so either a commitment (e.g. for key generation and key refresh) or
the message (e.g. for signing) is unambiguously concatenated with a protocol
specific prefix and the current timestamp to generate a non-interactive replay
resistant challenge.

NOTE: While most threshold signature schemes don’t define a key refresh
protocol (e.g. GG20 [2] and FROST20 [4]), it is relatively straightforward to
derive such a protocol from a standard proactive secret sharing scheme like
HJKY95 [7]. However, for applications that require support for access structure
modification, it is preferable to derive a key refresh protocol from a share
redistribution scheme like DJ97 [8] or WW01 [9], as the latter are more flexible
and allow for both proactive security and access structure changes (see section 6
for details and additional considerations).

NOTE: While general (t, n) sharing (and specifically the case where t < n)
is not formally specified in CGGMP20 [1], it can be derived in a relatively
straightforward manner based on GG18 [10] (and GG20 [2]) for the key generation
and signing protocols (as described in section 1.2.8 of CGGMP20 [1]) and
HJKY95 [7] (or WW01 [9]) for the key refresh protocol. In particular, this
entails performing t-out-of-n Feldman’s verifiable secret sharing [11] of the secret
shares for key generation (as described in section 2.8 and phase 2 of section 3.1
in GG20 [2] and similarly in section 2.6 and phase 2 of section 4.1 in GG18 [10])
or refresh shares for key refresh (with some modifications as described in sections
3.3 and 3.4 of HJKY95 [7] or in section 4 of WW01 [9]), and transforming (t, n)
to (t, t + 1) shares (using the appropriate Lagrangian coefficients) for pre-signing

4

and signing (as described in section 3.2 in GG20 [2] and similarly in section 4.2
in GG18 [10]).

4.1. Key Generation

Follow the key generation protocol described in section 3.1 and figure 5 of
CGGMP20 [1] to generate ECDSA secret shares with the following modifications:

1. At the end of Round 1, broadcast 2 additional parameters for each Pi

associated with the decentralized identity Ii with verifying key vki and
secret key ski as follows:

• The decentralized identity verifying key vki.
• The current UTC timestamp ∆.
• The signature σi ← Sig(ski, A∥∆∥Vi).

2. At the beginning of Round 2, for each Pi, verify σj from all Pj where j ̸= i:
• Verify that vki ∈ S or report the culprit and halt.
• Verify σj by checking that the output of Ver(vkj , A∥∆∥Vj , σj) is valid

or report the culprit and halt.
3. After the Output phase, follow the share splitting protocol in section 3.1

to split secret share xi into a signing share ki and a sub-share βi for each
party Pi.

4. Modify Stored State for each Pi as follows:
• Don’t store xi.
• Add vki, ki and βi.

4.2. Signing

Follow the signing protocol described in sections 4.2 and 4.3 and figure 8 of
CGGMP20 [1] to generate an ECDSA signature with the following modifications:

1. Before Round 1, for each party Pi, follow the share reconstruction protocol
in section 3.2 to reconstruct secret share xi.

2. At the end of Round 1, for each Pi associated with the decentralized
identity Ii with verifying key vki and secret key ski, send 2 additional
parameters to all Pj where j ̸= i as follows:

• The decentralized identity verifying key vki.
• The current UTC timestamp ∆.
• The signature σi ← Sig(ski, A∥∆∥m).

3. At the beginning of the Output phase, verify σj from all Pj where j ̸= i as
follows:

• Verify that vki ∈ S or report the culprit and halt.
• Verify that t is within the current epoch for identity authenticated

requests or report the culprit and halt.
• Verify σi by checking that the output of Ver(vki, A∥∆∥m, σi) is valid

or report the culprit and halt.

5

4.3. Key Refresh

Follow the key refresh protocol described in section 3.2 and figure 6 of CGGMP20
[1] to generate new ECDSA secret shares with the following modifications:

1. At the end of Round 1, broadcast 2 additional parameters for each Pi

associated with the decentralized identity Ii with verifying key vki and
secret key ski as follows:

• The decentralized identity verifying key vki.
• The current UTC timestamp ∆.
• The signature σi ← Sig(ski, A∥∆∥Vi).

2. At the beginning of Round 2, for each Pi, verify σj from all Pj where j ̸= i
as follows:

• Verify that vki ∈ S or report the culprit and halt.
• Verify σi by checking that the output of Ver(vkj , A∥∆∥Vj , σj) is valid

or report the culprit and halt.
3. After the Output phase, follow the share splitting protocol in section 3.1

to split the new secret share x∗
i into a new signing share k∗

i and a new
sub-share β∗

i for each party Pi.
4. Modify Stored State for each Pi as follows:

• Don’t store x∗
i .

• Replace ki with k∗
i and βi with β∗

i .

5. Identity Authentication and Quorum Approval
5.1. Identity Authenticated Request

Decentralized identity authenticated requests allow parties to perform or request
actions based on their associated decentralized identity.

5.1.1. Identity Authenticated Request Initiation To initiate an identity
authenticated request with a command C from a party Pi associated with
decentralized identity Ii with verifying key vki and secret key ski:

1. Read the current UTC timestamp ∆.
2. Compute the signature σ ← Sig(ski, A∥∆∥C).
3. Broadcast C, vki, ∆ and σ.

5.1.2. Identity Authenticated Request Verification To verify an identity
authenticated request with a command C from a party Pi given its associated
decentralized identity verifying key vki, a timestamp ∆, a signature σ and a set
of verified decentralized identities for all other parties S as input:

1. Verify that vki ∈ S or report the culprit and halt.
2. Verify that t is within the current epoch for identity authenticated requests

or report the culprit and halt.
3. Verify σ by checking that the output of Ver(vki, A∥∆∥C, σ) is valid or

report the culprit and halt.

6

5.2. Identity Challenge

Identity challenges are used to verify that a party controls a decentralized
identity.

5.2.1. Identity Challenge Initiation To issue an identity challenge to a
party Pi from all verifying parties Pj where j ≠ i for a verified request with
command C initiated at timestamp ∆: 1. Sample a random vj . 2. Broadcast vj ,
C and ∆ to all parties, such that all parties can compute v = ∥j ̸=i vj .

5.2.2. Identity Challenge Response For a party Pi with associated de-
centralized identity secret key ski, to respond to an identity challenge for a
command C initiated at timestamp ∆, given vj from all parties Pj where j ̸= i:

1. Compute v = ∥j ̸=i vj .
2. Compute the signature σ ← Sig(ski, A∥∆∥C∥v).
3. Broadcast C, vki, ∆ and σ to all verifying parties Pj .

5.2.3. Identity Challenge Response Verification To verify an identity
challenge response from a party Pi for a command C initiated at timestamp ∆,
given its associated decentralized identity verifying key vki, a signature σ and
vj from all verifying parties Pj where j ̸= i as input:

1. Compute v = ∥j ̸=i vj .
2. Verify σ by checking that the output of Ver(vki, A∥∆∥C∥v, σ) is valid or

report the culprit and halt.

5.3. Identity Rotation

Identity rotation allows any party to change the decentralized identity associated
with its secret share.

Identity rotation for a party Pi from a decentralized identity Ii with verifying
key vki and secret key ski to a decentralized identity I∗

i with verifying key vk∗
i

and secret key sk∗
i proceeds as follows:

1. For Pi, initiate an “identity-rotation” request by following the protocol in
section 5.1.1.

2. For all Pj where j ̸= i:
• Verify the “identity-rotation” request by following the protocol in

section 5.1.2.
• Initiate an identity challenge for Pi by following the protocol in section

5.2.1.
3. For Pi, respond to the identity challenge by following the protocol in

section 5.2.2 with the following augmentations:
• Compute an additional signature σ∗

i ← Sig(sk∗
i , A∥∆∥C∥v).

• Add vk∗
i and σ∗

i to the broadcast parameters.
4. For all Pj where j ̸= i:

7

• Verify the identity challenge response from Pi by following the protocol
in section 5.2.3.

• Verify that Pi controls the new decentralized identity verifying key
vk∗

i as follows:
– Compute v = ∥j ̸=i vj :
– Verify σ∗ by checking that the output of Ver(vk∗

i , A∥∆∥C∥v, σ∗)
is valid or report the culprit and halt.

• Modify Stored State as follows:
– Create S∗ by replacing vki with vk∗

i in S.
– Replace S with S∗.

• Broadcast confirmation of successful rotation of the verifying key for
Pi.

5. For Pi, upon receiving confirmation of successful rotation from a quorum
of Pj :

• Compute the new signing share k∗
i and sub-share β∗

i based on the
new decentralized identity I∗

i as follows:
– Compute the secret share xi by following the share reconstruction

protocol in section 3.2.
– Follow the share splitting protocol in section 3.1 to split xi into

a new signing share k∗
i and a new sub-share β∗

i based on the new
decentralized identity I∗

i .
• Modify Stored State as follows:

– Replace vki with vk∗
i in S.

– Replace ki with k∗
i .

– Replace βi with β∗
i .

5.4. Quorum Approved Request

Quorum approved requests allow any verified party to initiate actions that require
explicit approval from a quorum of verified parties before execution (e.g. share
addition and removal, and threshold modification).

A quorum approved request with a command C from a party Pi associated with
decentralized identity Ii with verifying key vki and secret key ski proceeds as
follows:

1. For Pi, initiate an identity authenticated request by following the protocol
in section 5.1.1.

2. For all Pj where j ̸= i that approve the requested action:
• Verify the identity authenticated request by following the protocol in

section 5.1.2.
• Initiate an identity challenge for Pi by following the protocol in section

5.2.1 with the following augmentations:
– Compute a signature σj ← Sig(skj , A∥∆∥C∥vj).
– Add vkj and σj to the broadcast parameters.

3. For Pi, upon receiving an augmented identity challenge from a quorum
Sc such that Sc ⊆ S ∧ |Sc| ≥ t − 1, respond to the identity challenge by

8

following the protocol in section 5.2.2 with the following modifications:
• At the beginning of the identity challenge response protocol, verify

that approvals have been received from a valid quorum of signatories
by checking that ∃Sc ⊆ S such that |Sc| ≥ t − 1 and ∀ vkj ∈ Sc

where j ̸= i, the output of Ver(vkj , A∥t∥C∥vj , σj) is valid or report
the culprit and halt.

• Compute v as v = ∥j ̸=i vj where vj ∈ Sc.
• Add Sc to the broadcast parameters.

4. For all Pj where j ̸= i:
• Verify the augmented identity challenge response from Pi by following

the protocol in section 5.2.3 with the following modifications:
– Compute v as v = ∥j ̸=i vj where vj ∈ Sc.

• Verify that a valid quorum of signatories has approved the request as
follows:

– Verify that |Sc| ≥ t− 1 or report the culprit and halt.
– Verify that Sc ⊆ S ∧ vki /∈ Sc or report the culprit and halt.
– Verify that ∀ vkj ∈ Sc where j ̸= i, the output of

Ver(vkj , A∥∆∥C∥vj , σj) is valid or report the culprit and
halt.

6. Access Structure Modification
Access structure modification allows a quorum of verified parties to perform any
of the following actions:

• share addition - issue a secret share to a new party and its associated
decentralized identity

• share removal - revoke the secret share of any party.
• threshold modification - change the threshold (i.e. change the size of the

quorum).

As noted in section 4, most threshold signature schemes don’t define a key refresh
protocol, and this is also the case for access structure modification protocols.
However, it is similarly relatively straightforward to derive a suitable access
structure modification protocol from a standard share redistribution scheme like
DJ97 [8] or WW01 [9].

In fact, for applications that require support for access structure modification, it
is preferable to replace a key refresh protocol based on (or similar to) a proactive
secret sharing scheme like HJKY95 [7] (as is the case for CGGMP20 [1] key
refresh) with a protocol based on (or similar to) a share redistribution scheme
like DJ97 [8] or WW01 [9] as the latter are more flexible and allow for both
proactive security and access structure changes.

NOTE: For threshold signature schemes with identifiable aborts (e.g. CGGMP20
[1], GG20 [2] and FROST20 [4]), key refresh protocols should be derived from
verifiable share redistribution schemes like WW01 [9] to preserve the same
security model.

9

Therefore, access structure modification can be achieved by following the aug-
mented key refresh protocol described in section 4.3 of this document, with
some modifications based on a verifiable share redistribution scheme like WW01
[9] (or similar) as described above. In particular, this entails each party (from
a suitable subset of parties) performing a t′-out-of-n′ (where t′ and n′ denote
the new threshold and new number of parties respectively) Feldman’s verifiable
secret sharing [11] (with some modifications as described in section 4 of WW01
[9]) of its current secret share (i.e. the output from either key generation or the
most recent key refresh) with other parties (in the suitable subset).

6.1. Share Addition

Share addition for a new party Pi with associated decentralized identity Ii

proceeds as follows:

1. Initiate a quorum approved “share-addition” request by following the
protocol in section 5.4.

2. Follow the augmented key refresh protocol described in section 4.3, with
verifiable share redistribution modifications as described above and with Pi

included as a participant, if the quorum approved request above succeeds.

6.2. Share Removal

Share removal for a party Pi with associated decentralized identity Ii proceeds
as follows:

1. Initiate a quorum approved “share-removal” request by following the
protocol in section 5.4.

2. Follow the augmented key refresh protocol described in section 4.3, with
verifiable share redistribution modifications as described above and without
Pi, if the quorum approved request above succeeds.

6.3. Threshold Modification

Threshold modification proceeds as follows:

1. Initiate a quorum approved “threshold-modification” request by following
the protocol in section 5.4.

2. Follow the augmented key refresh protocol described in section 4.3, with
verifiable share redistribution modifications as described above, if the
quorum approved request succeeds.

7. Share Recovery
Share recovery is only possible if the user’s decentralized identity either survived
or can be recovered after the disastrous event. In either case, there are two
options for share recovery depending on:

• A quorum of honest parties surviving the disastrous event.

10

• A backup (preferably encrypted) of a signing share k and sub-share β pair
on user-controlled secondary or device-independent storage.

7.1. Share recovery with a surviving quorum of honest parties

If a quorum of honest parties survives the disastrous event, share recovery can
be accomplished based on peer-to-peer decentralized identity authentication.

Share recovery for a party Pi with associated decentralized identity Ii with
verifying key vki and secret key ski proceeds as follows:

1. For Pi, Initiate a “share-recovery” request by following the protocol in
section 5.1.1.

2. For all Pj where j ̸= i:
• Verify the “share-recovery” request by following the protocol in section

5.1.2.
• Initiate an identity challenge for Pi by following the protocol in section

5.2.1.
3. For Pi, respond to the identity challenge by following the protocol in

section 5.2.2.
4. For all Pj where j ̸= i, verify the identity challenge response from Pi by

following the protocol in section 5.2.3.
5. Follow the key refresh protocol described in section 4.3 if all verifications

above pass.

7.2. Share recovery with a backup

7.2.1. Overview of share recovery with a backup From the share
splitting and reconstruction protocol in section 3, we note that for any party
P , the combination of a signing share k and a sub-share β alone is insufficient
to reconstruct the secret share x. This is because a signature of k from the
decentralized identity I is required to compute the sub-share α, so that α and
β can then be used to reconstruct L and compute the secret share x as the
constant term of L.

Therefore, a signing share k and sub-share β pair can be safely backed up to
user-controlled secondary (e.g. a secondary device or a flash drive) or device-
independent storage (e.g. Apple iCloud 1, Google Drive 2, Microsoft OneDrive 3,
Dropbox 4 e.t.c) without exposing the secret share x.

7.2.2. Generating an encrypted backup for share recovery For in-
creased security, a signature of a standardized phrase can be used as entropy for
generating an encryption secret which can then be used to encrypt the signing

1Apple iCloud. https://www.icloud.com.
2Google Drive. https://drive.google.com.
3Microsoft OneDrive. https://www.microsoft.com/en-us/microsoft-365/onedrive/online-

cloud-storage.
4Dropbox. https://www.dropbox.com.

11

https://www.icloud.com
https://drive.google.com
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://www.dropbox.com

share k and the sub-share β using a symmetric encryption algorithm before
saving them to back up storage.

Given a standardized phrase u, a key derivation function H, a symmetric encryp-
tion algorithm E, this proceeds as follows:

1. Compute the signature σ ← Sig(sk, u).
2. Generate the encryption secret ε = H(σ).
3. Compute the ciphertext for the signing share k as kc = Eenc(k, ε).
4. Compute the ciphertext for the sub-share β as βc = Eenc(β, ε).
5. Erase both σ and ε from memory.
6. Save kc and βc to backup storage.

7.2.3. Decrypting an encrypted backup Share recovery would then start
by signing this standardized phrase, using the signature to recreate the encryption
secret and then decrypting the encrypted backup to retrieve the signing share k
and the sub-share β.

Given a standardized phrase u, a key derivation function H, a symmetric encryp-
tion algorithm E, the ciphertext for the signing share kc and the ciphertext for
the sub-share βc, this proceeds as follows:

1. Compute the signature σ ← Sig(sk, u).
2. Generate the encryption secret ε = H(σ).
3. Compute the signing share k = Edec(kc, ε).
4. Compute the sub-share β = Edec(βc, ε).
5. Erase both σ and ε from memory.
6. Return the signing share k and the sub-share β.

7.2.4. Further security and usability considerations for share recovery
with a backup For further improved security and usability, the signing share
k can be prefixed with a custom message that alerts the user to the purpose of
the signature. This can help reduce the effectiveness of an adversary that gains
access to the backup and tries to trick the user into signing m.

Additionally, it’s possible to rerun the share splitting protocol to generate a new
pair of a signing share k∗ and a sub-share β∗ such that k∗ ̸= k, β∗ ̸= β and
L∗ ≠ L to be specifically used for backup and recovery. This gives us the option
to have separate signing shares for backup and recovery with customized prefixes
that make it clear to the user that they’re signing a backup signing share.

Lastly, the “backup” signing share k∗ can be generated based on user input
(e.g. a passphrase or security questions) removing the need for it to be backed
up together with a sub-share β∗ but instead relying on the user to provide this
input during recovery as a security-usability tradeoff.

12

Acknowledgements
This work is funded by a grant from the Ethereum Foundation 5.

References
[1] Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N. and Peled, U.

2020. UC non-interactive, proactive, threshold ECDSA with identifiable
aborts. Proceedings of the 2020 ACM SIGSAC conference on computer
and communications security (New York, NY, USA, 2020), 1769–1787.
https://eprint.iacr.org/2021/060.

[2] Gennaro, R. and Goldfeder, S. 2020. One round threshold ECDSA
with identifiable abort. Cryptology ePrint Archive, Paper 2020/540.
https://eprint.iacr.org/2020/540.

[3] Canetti, R., Makriyannis, N. and Peled, U. 2020. UC non-interactive,
proactive, threshold ECDSA. Cryptology ePrint Archive, Paper 2020/492.
https://eprint.iacr.org/2020/492.

[4] Komlo, C. and Goldberg, I. 2020. FROST: Flexible round-optimized
schnorr threshold signatures. Cryptology ePrint Archive, Paper 2020/852.
https://eprint.iacr.org/2020/852.

[5] Shamir, A. 1979. How to share a secret. Commun. ACM. 22, 11 (Nov.
1979), 612–613. DOI:https://doi.org/10.1145/359168.359176.

[6] Wikipedia. Polynomial interpolation:
https://en.wikipedia.org/wiki/Polynomial_interpolation. Accessed:
2023-05-12.

[7] Herzberg, A., Jarecki, S., Krawczyk, H. and Yung, M. 1995. Proactive
secret sharing or: How to cope with perpetual leakage. Advances in
cryptology — CRYPT0’ 95 (Berlin, Heidelberg, 1995), 339–352. https:
//doi.org/10.1007/3-540-44750-4_27.

[8] Desmedt, Y. and jodi, S.J. 1997. Redistributing secret shares to new
access structures and its applications. Technical Report #ISSE-TR-97-01.
George Mason University, Fairfax, VA 22030, Department of Computer
Science. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf
&doi=af623000d63f4c0251936b35c057a4d46581b4de.

[9] Wong, T.M. and Wing, J.M. 2001. Verifiable secret redistribution. Tech-
nical Report #ADA458508. Carnegie Mellon University, Pittsburgh, PA
15213, School of Computer Science. https://apps.dtic.mil/sti/tr/pdf/A
DA458508.pdf.

[10] Gennaro, R. and Goldfeder, S. 2018. Fast multiparty threshold ECDSA
with fast trustless setup. Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security (New York, NY, USA, 2018),
1179–1194. https://eprint.iacr.org/2019/114.pdf.

5Ethereum Foundation: Ecosystem Support Program. https://esp.ethereum.foundation.

13

https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/492
https://eprint.iacr.org/2020/852
https://doi.org/10.1145/359168.359176
https://en.wikipedia.org/wiki/Polynomial_interpolation
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=af623000d63f4c0251936b35c057a4d46581b4de
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=af623000d63f4c0251936b35c057a4d46581b4de
https://apps.dtic.mil/sti/tr/pdf/ADA458508.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA458508.pdf
https://eprint.iacr.org/2019/114.pdf
https://esp.ethereum.foundation

[11] Feldman, P. 1987. A practical scheme for non-interactive verifiable secret
sharing. Proceedings of the 28th annual symposium on foundations of
computer science (USA, 1987), 427–438. https://doi.org/10.1109/SFCS.1
987.4.

14

https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4

	1. Introduction
	2. Preliminaries
	3. Share Splitting and Reconstruction
	3.1. Share splitting
	3.2. Share reconstruction

	4. Threshold Signature Scheme Augmentations
	4.1. Key Generation
	4.2. Signing
	4.3. Key Refresh

	5. Identity Authentication and Quorum Approval
	5.1. Identity Authenticated Request
	5.2. Identity Challenge
	5.3. Identity Rotation
	5.4. Quorum Approved Request

	6. Access Structure Modification
	6.1. Share Addition
	6.2. Share Removal
	6.3. Threshold Modification

	7. Share Recovery
	7.1. Share recovery with a surviving quorum of honest parties
	7.2. Share recovery with a backup

	Acknowledgements
	References

